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(1.0)

introduction

This report summarizes the achievements of a one year program
conducted at Princeton University under AFOSR sponsorship. To a certain
extent this report represents a continuation of a previous 5 year
program that studied a number of topics related to wind tunnel wall
interference. The present effort focused on the aerodynamics of an
isolated hole in the wind tunnel wall. This problem is not only of
interest in its own right but, as the previous research demonstrated, it
is also the basic building block for the determination of the average
boundary condition for a wall covered with holes. The basic approach is
to determine the behavior of a hole using a 1lifting surface type
computer code. This method was inspired by an analogy observed between a
2-D lifting wing and the free surface problem for a 2-D slot in a wall.
As an significant refinement, the effect of a power law boundary layer
has been included through the use of a '"shear flow aerodynamics" kernel
function. The primary problems analyzed in this report are therefore

- 2-D and 3-D potential flow over an isolated hole, including the

effect of an imposed pressure gradient. -4
- 2-D and 3-D shear flow aerodynamics over an isolated hole.

Most of the remainder of this document provides a detail report on the

LT
. RISV

results of this work. The next section provides a list of publications

and participating personnel. R




(2.0)

Publications and Professional Personnel

(2.1) Professional Personnel

The professional personnel associated with the research effort were

Professor D.B. Bliss and Mr. P.-J. Lu, graduate assistant.

(2.1) Publications

The following publications are in preparation:

"Potential Flow over an Isolated Hole in a Wind Tunnel Wall," (to be

submitted to the AIAA J.), P.-J. Lu and D.B. Bliss.

"Application of Shear Flow Aerodynamics to Ventilated Wind Tunnel

Walls," (to be submitted to the AIAA J.), P.-J. Lu and D.B. Bliss.

"Aerodynamic Behavior of Ventilated Wind Tunnel Walls," Princeton Ph.D.

Dissertation to be completed in 1984, P.-J. Lu.
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(3.0)

Research Activities

The reseach during the past year focused on the local analysis of an
isolated hole in a wind tunnel wall. Such holes are the elements which
make up a perforated wall. The purpose of this 1local analysis is to
develop theoretical models to examine the inner structure of the fluid
flow around an isolated hole. In subsequent sections the cases of
inviscid irrotational (potential) and rotational (shear) flows over
isolated holes will be discussed. The pressure gradient effect in the
potential flow case is also considered. For convenience sake, the
terminology used to describe the flow over a 2D transverse slot and a 3D
finite hole is leaking-slot and leaking-hole theory, respectively. These
local analyses will justify the functional relationship between the
pressure differential and average flow deflection angle across a hole,

and give analytic values of the flow resistance constant Kh'

(3.1) Potential Analysis

To date, potential flow has been assumed in every analytical
investigation of ventilated wind tunnel walls. For longitudinally

slotted walls, experiments show that viscous effects are not that

important. The fluid flow and interference effects are principally due

Y

L
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to potential flow aerodynamic phenomena. However, for perforated walls, -j{u

viscous/boundary layer effects are by no means negligible. On the
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contrary, many experiments suggest they are very important. The present
potential flow analysis, which necessarily excludes viscous/boundary
layer effects, is undertaken in order to get a theoretical model which
gives a clear understanding of the most fundamental aspect of perforated
wall flow, namely, the momentum deflection of the oncoming stream across
the hole. Potential flow results are basically valid for large holes,
i.e., the cases when the hole diameter is much larger than the boundary
layer thickness. This potential flow treatment is only a first step in
the theoretical approach to understand the physics of perforated wall
flows and is a necessary undertaking prior to the more complicated

boundary layer analysis discussed later.

(3.1.1) Leaking-Slot Theory

Consider & transversely slotted wall, Fig.(3-1la), with negligible
wall thickness separating two different streams, one in uniform motion
and the other at rest. The static pressure differential across this
slot is assumed so small that small perturbation techniques can be
applied, i.e. the free surface deflection is small compared to the slot
length. Fig.(3-1la) depicts this slot flow, as well as the coordinate
system location. The half slot width and free stream velocity are used

as the normalization quantities.

The equation of motion is,




QI AW 4>xu + 4>zz =0

(3-1)

The boundary conditions are:
a) On the wall, fore and aft of the slot region, w=3¢/9z and over
the slot region, P=P, holds.
b) ¢ and V¢ vanish in the far field.
c) At the leading edge of the slot, the Kutta condition is
satisfied, i.e., w=0 at x=-1.

(3-2)

The boundary conditions as specified are valid only for the out-flow
case. To date, no theoretical analysis has been developed to treat the
in-flow problem. In the in-flow case, the flow is sucked into the high
speed stream from the plenum chamber. This process involves many effects
beyond the scope of simple potential flow analysis. For instance, a
wake flow usually will be generated after the flow passes around the
sharp trailing edge. Moreover, even without consideration of the
viscous effects, the sucked-in flow would form a low speed =zone
downstream between the wall and the high speed main stream. The location
of the dividing slip streamline between the high and low speed zones is
not known in advance, therefore, the boundary condition (3-2a) is no
longer applicable for eqn(3-1). A reasonable solution to this potential
in-flow problem must consider two flows with different stagnation
pressures having static pressures that must match on the slip streamline
and satisfy individually the appropriate boundary conditions. This in-

flow problem is not treated in the present work, and only on the out-
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flow problem is considered from here on.

Maeder(l) discovered the analogy between the 2D lifting airfoil and

leaking-slot flow in the early fifties. In the almost thirty years
since the discovery of the 2D analogy, the 3D hole problem has not been
solved analytically. The approach to be presented here is different
from Maeder's, and it is particularly helpful because it can be readily

extended to the 3D case described later.

If we examine the governing equation and boundary conditions of the
2D lifting airfoil and leaking-slot flows, the analogy is immediately
apparent. The comparison is illustrated in Fig.(3-1b). Since both
p(=-2¢x) and w (=¢Z) satisfy the Laplace-type eqn(3-1), switching the
roles of p and w and reversing the streamwise coordinate will transform
the lifting problem into the slot problem, or vice versa. The analogy

states,

'PL()O = N‘S(K) (3-3)

where subscripts L and s denote lifting and slot respectively.

To prove eqn(3-3) more formally, let us start from the integral
equation form which is deduced from the differential equation (3-1)
subject to the boundary conditions (3-2), except for the Kutta

condition. The integral equation, which can be found in many

(2,3,4)

texts , states that,

H
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The integral sign indicates that the Cauchy principal-value is taken for

integration across the singular point x= .

Note that eqn(3-4) holds true for both the thickness flow of airfoil
theory and the leaking-slot flow, since the flows are symmetric for
these two cases. The differences between them lie in the mathematics and
the interpretation of the downwash distribution. For the thickness and
slot flows, w(§) stands for the surface slope distribution of the
airfoil or the free streamline deflection, respectively. The former is
given for a fixed airfoil configuration and the latter i< what we want
to determine in the slot problem. Mathematically, t° ..ickness problem
is a direct problem, which means that by directly in~ ~grating the
principal-value integral the pressure distribution on the airfoil can be
determined. However, the slot flow is an indirect problem, because ¢x
is known while w(Z) must be obtained by solving the singular integral
equation together with the Kutta condition satisfied at the leading

edge.

Recall that the integral equation for the 2D lifting problem is,

WE () _ | 4
P e e 9 (5-5)
-1

The inversion formula of eqn(3-5) has a variety of forms; the one being
used here is from Ref.(5).
| w1 / y
(,n-:_-—’u-x 'I-E, wi(®)> C )
¢'~x mn .-xg e —i—_—_-;EJi-\- ——— (3-6a)
-

1= x2
or,
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Equations (3-6a,b) are two conjugate solutions to the singular
integral equation (3-5). Eqn(3-6b) was adopted in lifting problem by
letting c¢'''=0 to satisfy the Kutta condition at the trailing edge,
whereas eqn(3-6a) was discarded since no physically compatible flow was

found to be associated with it in the airfoil problem.

This technique developed for lifting airfoil theory can also apply to
the slot eguation (3-4) since it possesses the same kernel function.
However, in the case of slot flow, we adopt eqn(3-6a) instead, since now
the Kutta condition is specified at the leading edge. Therefore, w(%)/B

in eqn(3-4) is given by

+1
w ) - 1 ‘_*_'l‘.§ - % <bx(g) alg (3-7)
(5 My T=x 2 1+ § g —-X

For constant plenum chamber pressure, ¢x is constant over the slot

area, namely,

$o=-7 =g =3z 0P/2
where, APE(P“-pa)/q (AP>0 for out-flow ) (3-8)

Substituting the above pressure differential into eqn(3-7) yields,

W (%) _ QT_? = (3-9)
q 1 - X

L

in which the integral identity
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ventilated wall behavior because there are fundamental

differences in the nature of these fluid flows.

(3.1.3) Pressure Gradient Effect on Slot and Hole Fiows

The pressure gradient along a tunnel wall can very often reflect the
degree of interference between wall and model. For instance, if a very
low blockage-ratio model, say less than one percent, is installed in a
tunnel, the wall pressure gradient will be very small. However, for
larger models, especially ones in transonic flow with a supersonic
bubble intersecting the tunnel walls, very irregular pressure
distributions are seen, and under this situation, it is known that

severe wall and model interference occurs.

Suppose the hole in a tunnei wall is no longer considered as an
idealized point, but has finite dimensions. A pressure gradient will be
experienced as the hole is exposed in a non-uniform flow. It is
desirable to see how this pressure gradient affects the fluid flow
around the hole. As usual, we start our study from the 2D transverse

slot.

The downwash-pressure disturbance relation was already derived in

eqn(3-7) for a slot with constant imposed pressure,

PO
gl ,*_g % B NS0
¢ o-x J s rox 0% (c.f. 3-7)
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interference effects are negligible. Surprisingly, the potential -
leaking-hole theory result fits very well with the experimental data for
smaller holes. However, since information on the boundary layer was not

provided, it can only be regarded as a coincidence.

Owing to the lack of reliable experimental data, justification of the
validity of the leaking-hole theory can only be performed indirectly.

(12)

Bliss utilized slender-body theory to study longitudinal slots

analytically. He found that for certain slot shape, called D.B.B.'s
analytical shape, the exact solution can be found. This analytical
shape is shown in Fig.(3-10). This particular shape was used for the
hole planform, and the finite hole computer program was run for
different aspect ratios to check whether these two theories agree at low
aspect ratio. The result is plotted in Fig.(3-11), and the agreement is

encouraging.

At this stage, the properties and general features of the finite hole v e
in the tunnel wall can be summarized as follows.

) decreases as the aspect

1) The resistance coefficient Kh( = 1/CQ - ;g
P Lo

ratio of hole decreases.
2) The resistance coefficient Kh increases in proportion to 1/f

(B =/1-M?) as free stream Mach number increases in subsonic flow.

3) The hole flow is a thickness problem even though there are some
similarities between the corresponding flow variables for holes

and lifting surfaces. Experience gained in airfoil studies

should not be directly transferred to predict or explain RSN
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sectional distribution. However, near the tip the low and high aspect
ratio «cases show different tendencies. Generally speaking, the
sectional flowrate increases more sharply around the tip region as the

aspect ratio decreases.

Experimental data on the isolated hole problem is hard to find. Most

experiments are associated with perforated walls, most of which are

(10). The data found

(1)

thick wall cases done in the fifties and sixties

for the isolated slot and hole was carried out by Maeder

(11)

and

indirectly reproduced in Fig.(3-9) from Goethert These data were

obtained from a 4 inch height test section wind tunnel, with a slot
having 1 inch width and a hole 2.26 inch in diameter. First consider the
upper plot in Fig.(3-9). The difference between potential theory and the
experimental results can be seen. Boundary layer effect cannot be blamed
because the dimensions of the slot and hole are deliberately chosen to
be large to eliminate the boundary layer effect. Moreover, the boundary
layer effect tends to decrease the slope of pressure coefficient versus
deflection angle. This trend has been justified by other more carefully
designed experiments in which boundary layer thickness was reported.
The slot width is much larger than the wall thickness, so the edge
effect is not likely to be important either. A similar trend also occurs
for the single hole case shown on the lower plot, on which is shown our

theoretical result K,=1/C

h =1.003. The reason for this trend is probably

Qp
the relative dimensions of the tunnel cross section to the slot or hole
size. For a one inch slot and 2.26 inch hole installed in a 4x4 square

inch tunnel it is hard to imagine that the side walls and ceiling
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divided by the free stream velocity to make it dimensionless. Since our

theory is linear, therefore, is the reciprocal of the resistance

CQP

coefficient K i.e. =1/Kh' Fig.(3-6) shows its behavior in

s CQP

connection with the aspect ratio. Its trend of asymptotically

h)

approaching the 2D slot limiting case agrees with physical intuition.
The computer program ceases to be valid for aspect ratios less than
0.25. The reason is not clear, but failure could be attributed to the
inappropriate simulation of the preselected mode functions to the actual
downwash, because these modes basically are designed for larger aspect
ratio cases. The program also cannot handle shapes with aspect ratios
greater than 3.5. This situation is probably due to increasing the
number of spanwise control points which introduces more higher order
polynomials that are oscillatory in character. This causes the
associated influence matrix to become less well conditioned to
inversion. A similar limitation with respect to aspect ratic range was
also encountered in the kernel function method for wings. Nevertheless,
the round hole case falls in the range of validity of this leaking-hole

theory.

The Mach number dependence of C. is shown in Fig.(3-7). Its trend of

Qp

decreasing (increasing for Kh) in proportion to B(1/8 for Kh) has long

been observed in many experimental investigations.

Presented in Fig.(3-8) is the sectional volume flowrate coefficient,

which is similar to the sectional lift coefficient of the finite wings.

Three cases are studied, the round hole case has a very squared

- . .« . et . e . - el el e . PSR Ct e
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various parameters were all performed with 9 control points. These
control points are positioned at x=-0.5 ,0, 0.5 in the chordwise
direction, and y=0.2, 0.5, 0.8 in the spanwise direction. Actually,
this kind of control point distribution was suggested as the optimal
collocation arrangement by Watkins et al. in their development of the

kernel function method for lifting-surface theory.

A series of numerical experiments were carried out to examine the
elliptical hole family. A primary concern, the round hole, is a special
case of the ellipse with equal major and minor axes. The downwash
distribution is shown in Fig.(3-4) for a round hole in incompressible
flow. Three stations are selected to be the representatives for flow
near the root chord, mid-span, and tip regions of a round hole. The
distributions show similar behaviors to each other, but, deviate
substantially from the 2D transverse slot result. Fig.(3-5) shows the
downwash distribution for different aspect ratio¥* holes. Roughly

speaking, the basic shape of the downwash is magnified uniformly along

the slot as the aspect ratio decreases. In other words, low aspect ratio e

holes are more effective in allowing fluid to pass through. :;:If
Fig.'s (3-6) to (3-9) examine the volume flowrate coefficient CQ (CQ _:;_1

S SIS

at Ap/q=1). The volume flowrate coefficient CQ is defined as the volume j
n

R

of fluid flow passing across the hole per unit time per unit area, then

The aspect ratio defined in the hole problem is the maximum span to o
chord ratio. Multiplying this result by 7 recovers the usual aspect R
ratio defined in the airfoil theory.

'<‘n'. L
- & PR A PSP
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eqn's(3-20) and (3-21). This is the most difficult portion of the
numerical simulation. To adapt the numerical scheme to the present hole
problem, treatment of the singular integration must be modified. For
the lifting-surface problem, a Mangler type singularity is encountered
in the spanwise integration; however, for the hole problem, a Cauchy
type singularity occurs in the chordwise integration. Experience gained
from numerical lifting-surface theory indicates that proper handling of
the singularity is crucial to the accuracy of the final results.
Generally speaking, the quadrature scheme must be sufficiently accurate
and must preserve the special character of the principal-value

integration.

Guassian quadratures are adopted here for the numerical integration.
In order to achieve high accuracy, the hole area was divided into six
sub-regions, which are illustrated in Fig.(3-3). Each sub-region is
confined within the nearest solid lines. Sub-region IV contains the
control point(x,y) where singular behavior occurs, and considerable care
must be taken (the Cauchy principal-value and the Hadamard finite part
concept must be invoked). The location of the control point makes the
aspect ratios of these sub-regions change vastly. In order to use the
Guassian quadratures effectively, the order of the Guassian quadrature

used must be adaptable to the variation of this aspect ratio change.

A computer program was thus developed to study the finite hole
problem with 4,9,12 and 16 control points. The program results show

that the 9 point case is already converged. Therefore, studies for
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+\
b (x,4>= 25 IS a,_ g G " 1=t elq (3-20)
n m
-\

and,

Mo

Gop =5 Kixg, ynr 2, sine oo (3-21)
%-

47 [(*_E>I+F«Lsz(‘j_r)>7.13/2: (3-22)

Z(x—‘g,q-rﬂ =

in which, s=f/by, and all quantities are dimensionless.

The methods of solving for these unknown coefficients include: the
collocation method which makes the pressure differential be satisfied
exactly at a set of points; or the least-square method which
approximately satisfies the pressure differential at a larger set of
control points in the sense of least-square error. There is no concrete
evidence to suggest that the more complicated and expensive least-square

method is superior, therefore, we use the collocation method here.

If the hole shape is symmetric with respect to the mid-plane y=0,
which is often the case, and the imposed pressure differential is also
right-left symmetric, then the flow field will possess the same symmetry
property. Under this circumstance, there is an advantage to distributing
the control points only on half of the hole area and choosing only even
power polynomial modes in egn(3-17). This significantly reduces the

computing effort.

The remaining problem is how to numerically evaluate the integrals in
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The mode functions selected in the chordwise direction are in terms

of the angular variable 6. These functions are
tan -9 SMB sn28 - - - . Sinng ...
2 ’ ! 2 2 ’

The leading one, tan(8/2), takes care of the square-root singularity and
vanishing behavior at the trailing and leading edges. The rest are

regular over the region of interest and vanish at both ends.

The spanwise mode functions, however, are polynomials weighted by the
factor JTTHT which accounts for the vanishing of downwash at the tip.
These mode functions approach unity asymptotically at the symmetry plane
y=0.

An(r}\z J"'?t (c\r'u.""'rlc\m+ +rlm°~nm+" -
e = 7, (3-17)

Therefore, the unknown downwash distribution is expanded as,
¢ = 2 T L (A, (7)Y (3-18)
T B, & Y N

In the above, the chordwise modes are multiplied by a factor h/22n(n>1)

for convenience. The chordwise mode functions are

+an %: ( n=0 )
L,L8) = :
-5._’_" Sinne (n21(D (3-19) -

Substituting eqn's(3-18), (3-19), and (3-17) into the integral equation

(3-13), and manipulating the non-dimensionlization factors, finally ST

’ L.
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the 2D slot flow problem. However, the tip behavior must be justified
separately. Since the tip behavior is not singular, a loss of knowledge
about its behavior causes no serious trouble in the present numerical
analysis. The unknown coefficients of the downwash modes can adjust
themselves to achieve the best fit of the boundary conditions. Based on
this reasoning, Watkin's spanwise modes are adopted without modifying
the weighting function, since this weighting function ensures that
downwash vanishes at the tip which is required by the boundary

condition.

Since the approach is based on Watkin's method, we adopt his notation
and nondimensionlization. The new coordinate system is illustrated in
Fig.(3-2). Two reference length scales are taken, one is the half root
chord by in the x-direction and the other is the maximum half span £ in
the y-direction. Thus, the (x,y) or (£,n) coordinates of the hole fall
within the range, [-1, 1}]. An angular chordwise variable 6 was defined
also which allows the use of sin (nB) mode functions in the chordwise

direction. The 8 variable is defined as

E = % - %e cos O o4 B £ 17 (3-16a)
where,

= Be- B)/2 (3-16b)

Oloy = ( G+ %, 5/2 (3-16¢)

The functions Ele(n), Em(n) and Ete(n) represent the equations of the

leading edge, midchord line, and trailing edge, respectively.
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basically the kernel function method approach, which was developed in
1959 by NASA researchers, Watkins et al.(g). Of course, some
modification must be done to adapt this method to the present leaking-

hole problem.

First of all, we expand the unkown function ¢z into a series of

preselected mode functions with arbitrary coefficients to be determined,
4’2(5,,’1) = i 2.0
¢

Each function éi(i) must satisfy the Kutta condition at the leading
edge, otherwise the solution will not be unique. This spanwise mode
functions Oi(n) must vanish at the side edge, or tip, of the hole.
Whether this series converges and how many terms it takes to converge
within certain satisfactory error bounds, depends strongly on the choice
of mode functions. Generally speaking, the more we know about the
behavior of ¢z at the edges of the planform, the fewer the number of
mode functions that are required for the series to converge. This is
because the fluid flow changes abruptly at the edges where the

discontinuity in the boundary condition occurs. For lifting surfaces,

i 3

the pressure distribution usually behaves in proportion to £ , € °, and

el

is the distance to the edge. These behaviors near the edges have been

at the leading, trailing, and side edges, respectively, where ¢

obtained from the study of simple cases such as a flat plate at angle of
attack and the elliptic planform of lifting-line theory. In regard to

the hole problem, leading and trailing edge behaviors were determined in
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Eqn(3-14) can be arrived at by many methods, such as a Green's
Function approach or integral transforms. The derivation is not
performed here, since in the subsequent shear flow analysis a complete
integral transform method will be presented, and this potential flow is
just a limiting case. By observation, we know eqn(3-13) is in correct

form.

Physically, this integral equation can be interpreted as follows:
2¢z is the source strength distribution (a factor 2 is needed because
sources are located on the wall), and the kernel function A(x-§,y-n)
represents ¢x induced at point(x,y) by a point source located at (§,n).

Note that equation (3-14) also holds for the airfoil thickness problem.

The integral equation is again a singular one. A double bar across
the integral sign denotes a second order singularity, which is of the
Cauchy type rather than the Mangler type. This singularity happens when

y=n, for then

1

\
A( K‘g. 0d) = - m (x_g)l*_g\ (3-15)

It can be seen that A(x-{,0) is anti-symmetric and has a singularity of
order £ 2 across the point x=f. It is this anti-symmetric property that
makes the singularity of the Cauchy type. Therefore, the Cauchy
principal-value is invoked for chordwise integration across this jump

point.

Over the years great effort had been spent in the development of

(6,7,8)

numerical 1lifting-surface theory The method used herein is
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(3.1.2) Leaking-Hole Theory —

For the finite hole problem, no analogy between leaking-hole and

lifting-surface theories can be found. The reason for this is due to the

wake of a lifting surface, which has no counterpart in the finite hole
case. Making the problem three-dimensional introduces the spanwise

‘ coordinate and spanwise variables, such as the y-perturbation velocity
k;; ¢ . Across the wake of a lifting surface, ¢y takes a finite jump, and

y

is anti-symmetric with respect to the z=0 plane. However, for the hole

in a rigid plane wall, ¢y is continuous and symmetric across the 2z=0
plane. No mechanism in the leaking-hole problem can be found to match
the role of the trailing vortex sheet in the 1lifting problem. -
Therefore, it is unlikely there will exist an analogy between these two
flows. Thus, to solve the 3D hole problem, we have to directly deal with -
the boundary-value problem, and the understanding gained in the previous

2D investigation is very helpful.

As mentioned earlier, a hole can be replaced by distributed
source/sink singularities which occupy the same hole area. Other types
of singularities are excluded since they can not satisfy the boundary
condition on the rigid wall. The integral relation connecting ¢x and ¢z

is therefore
‘l’,‘<x,‘$3= S%$A(X-i,‘l-’73 24;(2.'77 oz dn (3-14)

where,

-1
Alx,yy= %x C

r= x4 pryr e

rrr]
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the present me i.nd directly attacks the boundary-value problem by
establishing and solving the associated integral equation. The
advantages for the present method are that the physical picture is
clearer, and the integral transform method can be extended to three-

dimensional flows without fundamental difficulties.

What is learned from the leaking-slot(2D hole) theory can be
summarized as follows

1) The slot flow is a thickness problem; it takes exactly the same
integral equation as the non-lifting problem of airfoil theory.
The slot flow problem can be viewed as finding a suitable
strength distribution of sources/sinks over the slot region which
can sustain the pressure differential across the hole as well as
satisfy the Kutta condition at the leading edge.

2) From a mathematical standpoint, slot flow is analogous to lifting
flow. The techniques developed originally to solve the singular
integral equation of the lifting problem can also apply to the
slot flow problem.

3) The downwash distribution over the slot region has a square-root
singularity at the trailing edge and vanishes in a square-root
manner at the leading edge. Indeed, the slot downwash
distribution is analogous to the airfoil pressure distribution,
and the slot pressure distribution is analogous to the downwash

on the airfoil surface.




= -¢ _dE%
Il § s =y for -1 x=+1 (3-10)

was used.

For a flat plate with angle of attack a, the pressure perturbation on

the upper surface is,

I - X
| +X

1°L(;0_ 20l
a  p

(3-11)

By appropriately choosing the constants «,B,AP and q, the analogy to

eqn(3-3) can be established.

Integrating w(x) from eqn(3-9) over the slot area yields the volume

flowrate across the slot,
S i
b AP
= —wo) dx = —_—
Q= | g

-1

The mean downwash velocity across the slot can now be obtained by

dividing Q by the slot width,

W = éa = ?ZE ng
2 4 q
or,
A..g = i W (3-12)
1=

The flow resistance constant, Kh=h/w8, of our analysis is the same
that Maeder obtained. However, the approach is different. Maeder solved
the incompressible flow problem by modifing the complex potential

function to transform the 2D lifting problem into the slot problem, but
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The total static pressure comprises three parts,
v=T_~ P+ P (3-23)

where P“ is the free-stream pressure of the tunnel flow pg is the
pressure disturbance induced by the model and adjacent holes; and p is
the pressure disturbance caused by the hole which is under discussion.
For the inner slot flow, P _+ pg is regarded as the imposed static
pressure infinitely far away, where p is considered to vanish. Moreover,
pg also satisfies the Laplace equation since it is derived from the
tunnel flow. Therefore, eqn(3-7) still holds for the case of an applied
pressure gradient. However, ¢x takes on another form and meaning over
the slot region. Across the slot area the pressure matches with the

ambient pressure P, hence
PA=E=?~+ P3+P

and,

=B~ Tu- Py

(3-24)

Assume that pg is a linear function in the streamwise direction, say,

- Y (3-25)
X)) =
P‘.\.( k ax\ x
Upon substitution of eqn(3-25) into eqn(3-24), ¢x on the slot can be
derived,

134 1 2P
A S AR 5 AR

(3-26)

where,
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AP= P.-
(3-27)
An analytic expression for the downwash distribution can be obtained
by inserting eqn(3-26) into eqn(3-7), together with the following

integral identities

% |-§ o{i _
I- = T ~-1eax&« 1 (3-9)
*«l
i-g § 4% _
= 3 = TMCI-%) ~1exe1 -
17_ % e To% % (3-28)

Thus, the downwash distribution becomes,

T ¢
W ._-\2-_ A—‘-L I‘T'*:’i [1- 2 3x\ C-x31 -16%21 (3.99)

P

The volume flowrate, found by integrating w(x) over the slot region, is

given by
of
Q@ -r(x) T A ) %

Averaging the volume flowrate by dividing it by the slot width, 2, and
rewriting in dimensional form, a modified AP/q versus wm/U“ relationship
which accounts for pressure gradient is obtained, (Here AP is the mean
pressure differential across the hole and wm/U°° is the averaged flow

deflection angle)

AP \ d P b ow,
-71-[ 1-a5 axl 1= ,,T,'P ol (3-31)

where d is the slot width.

(13)

Recently, Bliss extended his slender-slot theory to take into

account the pressure gradient effect. For his analytic shape with aspect

\
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ratio 0.25 and M~=O, an equation form similar to the above 2D transverse -
slot relation, eqn(3-31), can be deduced with coefficients calculated

correspondingly. The relation is,

g P w R

in which, # is the maximum slot length in the streamwise direction.

The same functional form can also apply to finite(3D) hole cases,
with the left hand side pressure differential term of the integral
equation(3-14) being replaced by eqn(3-26). The whole numerical
algorithm stays unchanged. Therefore, the pressure gradient effect can
easily be investigated by using the same constant pressure differential
program. The results calculated by these three theories are plotted in
Fig.(3-12). Slender slot theory breaks down for aspect ratios greater
than about 0.3, for which the slenderness assumption is violated. The f

agreement is generally acceptable.

Fig.(3-13) shows the sectional volume flowrate distribution
influenced by the presence of pressure gradient. The basic shape of the
distribution seems not to be disturbed tooc much by reversing the sign of

pressure gradient.

Since the above three theories are all linear, the effect of volume
flowrate change due to the presence of pressure gradient can be analyzed
in a more convenient manner. First, let us begin with eqn(3-31), the 2D
transverse slot case. Listed below are the 2D slot relations with and

without pressure gradient,




26

Y \ 4 2P U -

(AERES- S ARES- )

AP _ 4 v, (3-31)
. a wp(G,.X

where AP can be viewed as the average pressure differential over the
slot, and the subscript ¢ denotes the constant pressure case.

Subtracting these two equations yields

DCu=- TP 2Py (3-33)

6

©
X

0

Similar processes operate in the slender-slot and finite-hole theories.
Tne influence of pressure gradient on the volume flowrate is the same
for these three theories, i.e., the slopes are all of the same sign, as
expected. However, the family of curves for finite holes does not fall
in between the transverse and slender-slot theories. The reason is not
clear, and needs further explanation. It would be especially desirable
to compare with experimental results, should these become available in

the future.

{(3.2) Shear Flow Aerodynamics

Classical potential flow theory has proved to be extraordinarily
useful in aeronautical engineering. Attempts had been made to extend the
methods of inviscid flow analysis to more realistic flows which can

account for the effect of a boundary layer, at least qualitatively.

et T T e et et et et Lt

MY SRR




W N T TR S N S v g srenamoee ey e e Py oy
: - R N ) IR . Ty

27

(14-22) o

Many researchers e undertaken the development of methods to

solve for small disturbances to an inviscid, parallel shear flow passing
over a nearly plane surface. All these approaches are basically the
same: the equations of motion are derived by taking small perturbations
to the Euler equations with the main shear stream profile assumed given.
The role of viscosity is included only in that a mean shear flow profile
has been established. Neglecting viscous effects is valid as long as
they do not play an important role in the response of the shear flow to
the disturbances of interest. This will be the case as long as
convective effects on the rotational velocity field are dominant.
Obviously, a certain amount of judgement is required to determine for

which problems the method is applicable.

| Shear flow aerodynamics is claimed to be valid for certain problems
involving free turbulent wake and jet flows, as well as for turbulent

1(14) (16)

Williams , and

(15)

boundary layer flows. Dowel , Ventres

Chi(l7) used the turbulent power law profiles as their main shear stream

pattern. Lighthill(ls), Weissinger(lg), Homentcovschi and Barsony-

(20) (21,22)

Nagy , and Hanin assumed no specific shear flow profiles in

) their theoretical models, except for requiring a non-vanishing main
shear stream velocity and some integrability and smoothness conditions

. . (14-17) .
on the profile at rigid surfaces. Dowell, et al. developed their
) model originally for the purpose of solving panel flutter problems in
the presence of a wall boundary layer. They achieved considerable

(

. . . . 23 .
success in comparisons with experimental results ) by using a power

) law profile. However, researchers who have applied shear flow models to
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the aircraft lifting-surface problems have met with rather limited
success. Two major criticisms can be made of the use of the power law
profile for wings. First, on the wing of an aircraft, there always
exists a finite extent of laminar boundary layer starting from the
leading edge region which can not be modelled by a turbulent power law
profile; second, the boundary layer thickness is not constant along the
wing. (The case of slowly varying thickness has been treated by
Chi(17), although the analysis is considerably more complex.)
Application of this type of shear flow aerodynamics is therefore
restricted to control surfaces for which the boundary layer has already
been fully developed on the main wing. The smaller chord lengths of
control surfaces provide less chance for the boundary layer thickness to
(18)

vary significantly. Lighthill's approach

and Hanin et al.(21’22), was to study the aerodynamics of wings in a

, as adopted by Barsony-Nagy

sheared wind, a jet, or a wake. The approach provides much flexibility
in selecting the appropriate shear flow profile. However, the difficulty
in deriving the kernel functions is increased, and thus the whole
analysis relies heavily on numerical means which in general are complex

and expensive.

A perforated tunnel wall boundary layer is a mixed combination of
wall turbulent and free turbulent boundary layer flows. For the case of
zero porosity f(a completely closed wall) the flow is entirely wall
turbulence; for unity porosity (fully open wall) it is free turbulence.
Since the aim of the analysis is to analyze boundary layer effects on

low porosity walls, it is natural to adopt the shear flow model of

~
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Dowell, et al.. The aforementioned two drawbacks of this model become
unimportant for the present application. In a wind tunnel test section
the wall boundary layer is usually a fully-developed turbulent flow, and
the layer thickness may be nearly constant, or at least slowly varying
throughout the test section. It is the combined contributions of
inertia, wall shear stress, momentum diffusion by viscosity, and
boundary layer suction due to leakage through the holes which result in
the equilibrium, constant boundary layer thickness power law profile.
The boundary layer effect on a leaking-hole is therefore ideally suited
for the methods of shear flow analysis. The boundary layer is well
established before encountering a hole, and the hole size and boundary
layer thickness may be comparable. This means that the layer structure
cannot be greatly altered by its brief encounter with the hole. Viscous
effects act only in the formation of a free shear layer at the free
surface over the hole, but this shear layer thickness will be small
compared to the overall boundary layer thickness. The deflection of the
flow into the plenum chamber is therefore regarded as the bending of
streamlines to counterbalance the vertical pressure differential.
Viscosity dominates only when this pressure differential does not exist,

or is very small.

In order to keep the analysis as clear as possible, a method

(15)

developed by Ventres is considered here to analyze the boundary

layer effect on the transverse slot and finite hole flows. We will first

review Ventres' approach, then add the necessary modifications to adapt

this method to the hole problem.
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(3.2.1) Basic Shear Flow Analysis

(15)

Ventres considered a steady, incompressible, parallel shear flow

as depicted in TFig.(3-15). The surface, 2z=f(x,y), creates a small
perturbation from the initially parallel shear flow u=U(z), v=w=0. The
function U(z) is constant for 2z>§, so that the shear layer is limited to

the region 0<z<d adjacent to the surface.

The momentum and continuity equations for the fluid flow are

u.ux+fuu%+ W‘*a“'(‘-/?)""x:O

WAL MV w, (39D p,= O
W W%"\' '\f‘hr,s +W&Yi+(1/33 'Pz.—.o
=

Uy + V'3+w = O

(3-34 a,b,c,d)

Let u', v', w' be the perturbation velocity components, and let p' be

the perturbation pressure. Then the total veleocity and pressure are

u=Uzr+

¢

AT = AT
\,\r:‘_\ad"
P = Brp

(3-35 a,b,c,d)

Inserting eqn's (3-35 a-d) into eqn’'s (3-34 a-d), and retaining only

the lowest order terms yields,

i
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U uy + W' (dT/d2) + (1!3)19,: = O
U a5 + (48, =0
U wy + (4/g) g, = ©

v » ’
A AV 4+ W = O
Y =+ “ Y

A single equation for the perturbation pressure p ( the prime is now
dropped for convenience ) can be derived by eliminating the velocity

perturbations between the equations.

P -(2/Uud(dU/de) § =0 (3-36)

where V? is the Laplacian operator. The Fourier transform technique is
used here to solve the boundary-value problem. The Fourier transform

pair is defined as,

400
. | - Ok koD
Mod Lk 24 )
P _ _ f{ » et( X+ Y dk\dkl
271 e (3-37)

By applying this transform to eqn(3-36), an ordinary differential

equation is obtained,

2 N ~
ol (2/U)(dv/otz)“aﬁl-(l.,"+ kIye =0

d2r (3-38)

The variable coefficient in front of the second term vanishes for z>§, T

where the initial flow velocity is constant.

Specifying a 1/n power law for the shear flow velocity profile,

P

e
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Yn
Uey = U (2/%) 2<%
= U, 223
(3-39)
and applying it to eqn(3-38) gives
0\2?' 2 de* 2 h
Far T Ae A T RP =0
R = ¢ h2s vl NG (3-40)

Eqn(3-40) can be transformed into a recognizable Bessel equation by the

following transformations of the dependent and independent variables,

=2 4
A= Rz (3-41)
where, v = 1/2 + 1/n. The transformed equation reads,
d%ﬁ x o-LZy+1la=o
(3-42)
The general solution to eqn(3-42) is,
aQ = A'S_V(R13+B 1’\)(R23 (3-43)

in which, Iv is the Bessel function of the second kind of order v. The
unknown coefficients A and B are determined by the boundary conditions
imposed on the surface and at the outer edge of the shear layer. The
boundary condition for the outer edge of the shear layer is obtained by

noting that eqn(3-40) reduces to

d:‘_.g'—RzP.=O tor 2>
de?

S
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Solutions to this equation have the form,

Rz -Re
P*z e , €

Only the second one is bounded as z +~. Therefore, for z>6§, p* satisfies

the equation

éf; +rp =0

Py (3-44)

We shall employ this relation as the boundary condition at z=8§.

Note that both the shear flow profile, eqn(3-39,) and the equation of
motion, eqn(3-36) do not apply on the surface. The profile does not
apply because the shear flow model is not valid within the laminar
sublayer. The equation of motion is not applicable because it is not
permissible to take perturbations around a vanishing base quantity. The
inner boundary condition should be specified at the outer edge of the
laminar sublayer. Here we denote the height of the sublayer by z=z,, and

from the z-momentum equation,

’éf = -9U s
AN ox kw.
where,
| = KJ‘ 24
=2, 2:%, 99X
or,
2P = —eUt 2 ¢
12\01;‘ PU (/8> 5. (3-45)

The Fourier transform of this boundary condition is,
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d?. - 2 2/n . 'a__{ »*
i \z=z° = -PU(&/8)  tk, (5L 3-26)

Using the outer boundary condition, eqn(3-44), will eliminate one

unknown coefficient, and the general solution becomes,

\4
P'= (R2Y AL T (R -L(3RYT_(R2)] (3-47)

where,

T, + T, (5R)
L,6R)+ T (s)

L(se)=

(3-48)

By imposing the inner boundary condition and using the recurrence

relation for Bessel functions, it can be found that,

1 dp
pUr 4L

\4
=AR (RzY [T, (Rz>-LsRIT_ Rz

2/
= (2.8) ik, (2%/ox Y (3-49)

Since the thickness of the laminar sublayer is usually very thin,
zp<<6, the terms in the square bracket of eqn(3-49) can be expanded in a

Taylor series. Note that,

T (B~ (323/T s wa-a,-z0 R«

By taking the limit of 2z¢+0 in eqn(3-49), the constant A can be

determined,

2 #n »
= (R ik (% (3-50)

......
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Analogously, we let z in eqn(3-47) approach zero to seek a relation

connecting p* and (3f/3x)* on the surface,

Pt = A" L U (26 ]

* _ U ik \s 2 &0
A (k\S,h;S)-———-———Vr(l_v)( Tz)( SR) L(3RD
L(sR) = _EpsrY+ T, 05R)

Ty« T (8R)

(3-51 a,b,¢)

By inverting this Fourier transformed relation and wusing the
convolution theorem, the pressure on a surface of infinite extent with
an arbitrary perturbation contour can be established. The integral
region becomes finite if we further utilize the specific symmetric/anti-
symmetric property of the lifting or thickness problem. Ventres treated
the 1lifting case by inverting 1/A* to obtain the lifting Kkernel
function. He then solved the lifting case numerically using an approach
similar to Watkin's method. The present interest is to solve the
problem of a hole on a plane rigid surface, which is a thickness
problem. Therefore, from here on we proceed to solve the integral

equation pertaining to this case.

(3.2.2) Shear Flow Leaking-Slot Theory

The two dimensional integral equation can be obtained by setting the
y-direction wavenumber k,= O in the 3D equations. The 2D transformed

equations thus derived are of the form

K
Ak

. .
Sl

- R PRI A AT -« P T T e . R L LI L T e B AR S I .
F P T A SR R A P PR T T T o R T
P R PP L L IR PRI PO T PP A P PP B PR T S R .



36

Pt = A" (2F/x D

* Ta+) . kR 2 _2n
kA = A 2T R <
A¢ ey (o Y (Y LD
LCsthgd = TpCBthid+ T, 81k

TL8aDd+ T8Ik

(3-52 a,b,c)

in which quantities are normalized by the potential flow velocity U and

the half slot width.

To obtain the thickness kernel, A(x), we must invert A", However, it

cannot be inverted in the usual Fourier transform sense. According to

(24)

Lighthill , the singular part of A(x) can be obtained by inverting

the asymptotic expansion of Aw for large k,. The function L(8[k,})

approaches unity uniformly regardless of the parameter v, therefore with

the aid of the formula(zs),
v v-\ (
x X Sin(xw)odx = W \"(|—w)ccs(—7—_w7r3
[+]

otlRe v e 2

where the singular part of the kernel function is expressed as,

at Y GTPSVE RN

| 2 ko
fz‘qwg v (1-u) \k.\( D e olle,

A =
Sk,

+
= -3 Sw 27\ )

2 2in )
Tow ), it Gw) S heds,

As(x) then takes the form,
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important characteristic that differentiates the hole from the slot
(Another important characteristic is the swept leadin. and trailing
edges). It is shown in Fig.(3-28) that the velocity defect of the shear
profile tends to enlarge this difference. A similar trend is also found
for the boundary layer thickness effect on the sectional volume flowrate
as illustrated in Fig.(3-29). This diagram also reveals the powerful
influence of boundary layer thickness on the volume flowrate across the

hole.

Fig.(3-30) demonstrates the boundary layer thickness effect on the
volume flowrate. The simulation was performed for a 1/7 power law
profile with pressure differential Ap/q= 0.1, and with & normalized by
the hole radius. A similar trend is observed by comparing with the slot
case, Fig.(3-24). A dent in the curve occurs around 6=0.5 for the hole.
A check of the convergence of the program was done for this rauge of §,
and it appears this behavior is not due to numerical error. This
special feature was not observed in the 2D case. The reason for this
behavior may be related to an effect of the finite width of the hole and

the complicated nature of the flow near the side edges.

Since the presence of the boundary layer magnifies the deflection of
the oncoming stream into the hole, it is desirable to see at what
thickness value the boundary layer would make the flow violate the small
perturbation assumption. A test was carried out for the 1/7 power law

profile shear flow with Ap/q=0.1. Since it is known that the largest

deflection of the flow always occurs at the trailing edge of the hole, a




49

the potential case, but it is still of the Cauchy type. The singular

integration involved in the solution method has the form,

dx
1 ~ % ——(T-_Z./n (3-74)

X i%

It can be resolved by the method discussed in the potential flow with

slight modifications.

Watkin's method is again employed to solve this singular integral
equation. The mode functions are borrowed from the potential case
without regard for their inappropriate representation of the edge
behaviors. The numerical simulation was performed for two shapes, the
round hole, and D.B.B's analytic shape. The latter can be regarded as a

more nearly square hole.

The important Cp versus wm/U°° behavior is illustrated in Fig.(3-26).
As in the slot flow case, the curves are slightly non-linear and
boundary layer shows a strong effect in changing the Cp versus wm/Uw

characteristic.

Fig.(3-27) shows the influence of shear profile on the volume
flowrate across the hole. As compared to the 2D case of Fig.(3-18), the
finite hole is more profoundly affected. This is probably due to the
finite span effect which distinguishes the hole from the slot. This

explanation is confirmed in the next figure.

The sectional volume flowrate is a convenient quantity for making

comparisons between 2D and 3D cases. The finite lateral span is the most

PR S
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approximately twice the boundary layer thickness. For thin boundary
layer cases, 8/d<<l, the averaged perforated wall condition only needs

modification of its resistance constant k the streamline curvature

h;
term will remain largely unaffected because the boundary layer effect is

not likely to extend far enough.

(24)

According to Lighthill the kernel function behavior in the larger

distance r>>1 can be deduced from the behavior of its Fourier

transformed counterpart for small R=/kf+k:<<1. A" for R<<1 is found

to be,
» Lk, -2V gR r 2
~ ='{ 1% 2= 4+ O(™R™ R« 1
A~ UMY 5y 2 1 (3-71)
Since,
g \
on [ (Rrddr= —
had 2
S R reYAR= T, (3-72)
(-4
We have
Ae 202w 1222 8
~ Sx - SG-pY T > A (3-73)
1
Eqn(3-73) justifies that for r>>§ ? , the shear kernel function A

decays at the same rate as the potential kernel. Based on the numerical
data exhibited in Fig.(3-25) and the far field analysis, in later
numerical calculations the shear kernel is replaced by the potential

kernel for r/6>2. This simplification saves a lot computing effort.

The singular behavior of the present kernel is weaker than that of
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the use of

or

X
o9x T ¢

o
az 3,(8d= - T (2)

we can obtain a more numerically suitable form for 6Ar’ namely,

oo

*A= 5y §m(a) (Lew-1TuTF Cugyda (3-69)

We can now conclude that the integral equation for 3D hole in shear

flow is,

| 2
P(X,s‘s\ = -2—’—" S‘&S A(X—‘,,‘j-q3 a—‘,;(g,rp dia(*l

(x, = A (x, ,
Ax,w> AL TSR NN NN (3-70

in which, AS and Ar are defined in eqn's(3-67) and (3-69), respectively.

Because of the fundamental importance of the kernel function, we
evaluate and plot the kernel in Fig.(3-25). The potential kernel is
plotted from the previous potential flow analysis. The implications of
this kernel function behavior are the same as for the 2D transverse
slot: mutual interaction between holes is weakened by the presence of
the boundary layer, and the boundary layer effect does not extend very
far. In fact, beyond a distance of approximately twice the boundary
layer thickness, the shear and potential kernels are not significantly

different and die out at the same asymptotic rate. This implies that

the boundary layer effect is confined within a 2zone of radius
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eqn(3-63) is radially symmetric. Upon using polar coordinates for (x,y)
and (k;,k,) , the Fourier transform turns into the form of a Hankel

transform and it states,

A (x,u)= D) 2 2 (7 n
$70 vF'C\-v)( R So 3oCRrY AR

- Ya
r= (X4
(3-64)

where Jo is the Bessel function of the first kind of order zero. Since,

from Watson(26),
o 3+ + =
g t,‘( _Sv(at\olt = 2 S( 7‘” ) (3-65)
therefore,
o ~2/n =Un -3
S R I,(rRrYdr = Z‘z/ﬂV‘(a ';) (3-66)
° Y'— P(’%‘\’T.)
and consequently,
1 2 1
Agand = —0 () (3-67 a)
or,
- 1
SA Y= 5 [ s 1 (3-67 b)
Likewise, the regular part can be deduced by inverse Fourier

transforming A“-A: (actually Hankel transforming in the polar
coordinate). The regular part Ar takes the form,

V(\+v)

SA(X\‘Q—?‘ —
® AR QR

N u\ " Lo~ 1173y du (3-68)

The partial derivative 3/3x can be taken inside the integral sign. With

e et . bt 1o or -, -
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(3.2.3) Shear Flow Leaking-Hole Theory

To study the 3D finite hole problem in a shear flow, we must first
obtain the integral equation. The Fourier transformed equation connecting
the pressure differential and the free surface slope function is already
available in eqn(3-51). As noted in the 2D case, the kernel function is
not invertable in the wusual Fourier transform sense because it is
singular. Therefore, we split the kernel into regular and singular
parts. The singular part is derivea analytically, for which the finite
part concept is invoked, The regular part is not analytically derivable

but can be obtained through routine numerical means.

The singular part, AS, can be obtained by Fourier inversion of the

%
asymptotic expansion of A . Note that the asymptotic expansion of the

Bessel function Iv is even with respect to the index v. Therefore,

0

L(8R)»1 as R+~ (R=Vk?+kZ), and the asymptotic expansion of A" for

large R is,

. i) ik, 2 2/n 'j
Agry~ o= C)(5RY . R»a (3-62) ]

Applying egn(3-36) to invert eqn(3-62) yields,

+o0 2 4
_ 1 9 IR TEI 2 Un .'_.'_
As(x,dsﬁ_ 27 A% Si v (-w) (J‘R\( SR) k|
i R T

eL(KX* i di,dh,

(3-63)

in which the finite part concept is used. Note that the integrand in
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Here n is the normal coordinate, V is the flow velocity, and R is the
radius of curvature of the streamline. For the same pressure
differential across a slot, the boundary layer tends to slow down the
flow velocity near the wall and slot. This will make the streamlines in
the vicinity of the slot region curve more to produce the same normal
pressure gradient, thus resulting in a larger deflection of the free
surface. A larger boundary layer thickness and a more slowly varying
shear flow profile will both tend to reduce the flow velocity near the
slot. Therefore, the free surface deflections, based on the above
reasoning, become larger. However, the effective shear stream velocity
along the entrance plane is affected in the opposite manner. These two
counteracting tendencies both contribute to the final volume flowrate
through the slot. The boundary layer thickness is found to be the more
influential factor, and this generally agrees with experimental

observations.

Fig.(3-24) shows the effect of boundary layer thickness on the volume
flowrate. Yere the pressure differential is not too large, Ap/q=0.1, and
1/7 power law profile is employed in the shear flow model. Below 6=0.5
the boundary layer and the effective shear velocity U(zf-s.) nearly
balance each other to stay close to the potential flow result. Beyond
§=0.5, the boundary layer effect becomes increasingly dominant and CQ

increases steadily, and does not approach an asymptotic value within the

small perturbation range.
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Owing to the non-linear behavior of the Cp versus wm/U°° curve, the
rest of our examination of the characteristics of a slot in shear slow

is performed with the pressure differential Ap/q=0.1.

The free surface slope distribution and the slot entrance downwash
distribution are shown in Fig's(3-20) and (3-21) for three shear flow
profiles n=5,7, and 50. The n=50 case is very close to the potential
flow result. The results show that the greater the velocity profile
defect(smaller n), the larger the free surface deflection will be.
However, the main stream velocity at the entrance plane, U(Zf.s.)’ is
reduced for larger velocity profile defect to an even greater extent.
These two opposite trends, when multiplied together to produce the
downwash distribution on the entrance plane, reduce the difference
between the boundary layer flow and potential flow. Therefore, w(x,0)

in Fig.(3-21) is seen to depart less from the potential flow result than

does the free surface slope.

A similar situation occurs for a fixed shear profile shape, say n=7,
when the boundary layer thickness is varied. Fig.'s(3-22) and (3-23)
illustrate this behavior in detail. All these slot flow phenomena are
associated with the momentum and velocity deficits introduced in by the

boundary layer, and can be explained in the following way.

The inviscid flow momentum equation in the normal direction described

by the intrinsic coordinate system is,

g vt
‘E = 9 = (3-61)
N R
e e e e Ml e e
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Fig.(3-18) shows the volume flowrate coefficient CQ at pressure
differential Ap/q=0.1 for different profiles. In turbulent flow the
index n ranges between 5<n<12, depending on the Reynolds number of the
flow. The most common case is n=7. The boundary layer thickness was set
to be unity, which means the boundary layer thickness equals to half the

slot width. The diagram indicates that CQ is not too sensitive to the

shear flow profile shape.

Fig.(3-19) shows the Cp versus wm/U°° characteristic curves. The shear
flow model is a 1/7 power law profile, and the boundary layer thickness
is chosen as the parameter being varied. A strong influence of boundary
layer thickness on the Cp versus wm/Uw characteristics is seen. The
family of curves are only slightly non-linear near the origin. As
pointed out earlier, the present theoretical model may not be
appropriate for a very small pressure differential, since real viscous
effects would be as important as the pressure differential term is in
this case. Experimentally obtained Cp versus wm/U” characteristics also
show very irregular and fluctuating data distributed around the origin.
Moreover, experimentists often claim little confidence in their data in
this region. The trend of decreasing slope of the Cp versus me/~ curve
with increasing boundary layer thickness exhibited in Fig.(3-19) is
consistent with the experimented results for thick walls with normal or

(11)

slanted holes Unfortunately, no experiments have been carried out

for a single slot or hole in a thin wall. Thevefore, detailed

comparisons can not be made to test the theoretical model.

. e e e e e et e
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The singular behavior of the shear kernel is proportional to

2/n
X

Ay ~ XV
X

near the point x=0. A(x) is discontinuous at x=0, but it is integrable
from both sides of this singular point. There is no need to invoke the
Cauchy principal-value concept. Care has to be exercised in the
integration to be sure not to jump across the singular point when it is

) contained in the region of integration.

The kernel function method presented in the previous potential hole
problem is used here to solve the singular integral equation(3-56). We
expand the unknown free surface slope function into a set of preselected

mode functions,

e o

af
a5 - 2 a4 (> (3-59)
L
| where, _ 1+ % = o
i 4%(23 - —;TE (n )
4),,(23‘-: “:.'L;n sinné 9:(.05-"% (r=1)
(3-60)

The singular mode is borrowed from the potential slot flow result
with some reservation since its behavior at the leading and trailing
edges are not yet known. This kind of strategy was also employed by
Ventres. The numerical results show that convergence is satisfactory for

this selected set of mode functions.
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to it. The mass flux going out of the control volume is
4(1)-\-?;‘,‘5"
9& ULk, z2rdz
o
Using the law of mass conservation gives,
£60 ¥m)+%&Ax
\ uL%,Z)o\2+‘\r"(x,o)bx=% “wix,2)dz
o © (3-57)
The right-hand-side term can be approximated as,
£oo foo+ 2 ax
RHS = \ “
) {00
£ox) .,
= % uix,z2 4z + Fx X am®m + HOT
° 2=£(x)
Therefore, by taking Ax»0, w is found to be
Wi, 0= ¥ (x
PR ( ’2)‘i=$(x)
_ of ,
= Sx [U®m+dx,ay \ (Ve U)
2=ty
28 -
* U D 5 (3-58 a)
and X .
2 = g 3_. d
s, ). % 5 (3-58 b)
because Ze o =0 at the leading edge x = -1.

Eqn(3-58) implies that the main shear stream profile as weil as the
height and slope of the deflected free surface all have an influence on
the flowrate across the hole. The dependence o: the entrance downwash on
the free surface slope is in general non-linear, therefore, we cannot

expect a linear relationship between Cp and wm/C~ in the shear flow.
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Ventres) as the downwash that would exist on the surface if the shear
layer were absent. Furthermore, this normal velocity is specified on the
z=0 mean plane instead of the real surface because only lowest order
solution of the perturbartion theory is to be considered. However, in
the slot flow problem, the variable specified as the boundary condition
over the slot region is the pressure, not the surface slope. Similarly,
because the deflection of the free surface is small, and only lowest
order solution is sought, the pressure is specified on the slot entrance
surface z=0. The role of df/dx in these two closely related problems
should not be confused, as both of them involve the specification of a
boundary condition in which some approximation is made. The function
df/dx of the slot flow problem is related to the downwash distribution
on the 2z=0 plane. However, this relation is obtained from considering
the conservation of mass, not the flow tangency condition used in the

airfoil problem.

Consider, in Fig.(3-17), a shear flow that slides along the free
surface deflected down into the plenum chamber. The dashed lines
represent a control volume, and the distance between the left and right
control surfaces is Ax. The mass flux coming into this control volume

from the left control surface is

§

and from the top is,

foo
S U(x,2YdZ

[}

§ wi(X,0) Bx

No mass flux goes across the bottom surface because the flow is tangent




.ﬂrv T

————— L omR s s aee g LM e da s ariet Al R SRt e e i i o M < e St iaredaie e i S S A

38

wall would be attenuated by the presence of boundary layer. One
implication of this behavior is that interference between neighboring

holes is strongest in potential flow.

The integral equation for the 2D shear flow thickness problem can be
determined by formally inverting eqn(3-52), and using the convolution
theorem and the fact that (df/dx) vanishes outside the hole planform.

Thus,

+ 1
_ Af)

A= Ao + A0 (3-56)
where As(x) and Ar(x) are defined in eqn's (3-54) and (3-55).

Before proceeding to solve the integral equation, some care must be
taken to differentiate between df/dx and the downwash distribution on
the z=0 plane. In our slot problem, z=f(x) is the equation of the free
surface which separates the tunnel flow from the stagnant plenum
chamber. Along this free surface the static pressure of the flow
matches with the plenum chamber pressure. Without invoking any basic
fluid flow equations, such as the continuity or momentum, df/dx has no
special meaning except that it is the free surface slope distribution
function. For airfoil problems, df/dx is associated with the normal
velocity on the wing surface through the use of a kinematic flow
tangency condition. In potential flow, U“df/fx is this normal velocity,

while in shear flow, the corresponding quantity is multiplied by the

outer potential flow velocity to become U,df/dx, and is explained (by
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Tavd TC2- 1 il n
As(xwz-j——f;r hid 22) = (2 Y s (r/nd

vi7 (-1 B (3-54)

The regular part of the kernel can be obtained by inverting Aw-A:, so

that Ar takes the form,

Thav) o 2 Un
I B S £ -1
Ar(xﬁ— i’h‘ TGy \ok =) (Lo A\
'S;ﬂ(u‘:‘g) A e

-

(3-35)

Lot . s e ou o

Ar(x) must be calculated numerically. This is not too difficult because

é. of the exponential decay property of ( L(u)-1).

A check on the shear flow kernel can be performed by letting the

power n-»e. Since by definition v=1/2+1/n, therefore v+1/2 as n»«. This
makes the function L identically equal to 1, and therefore from

eqn(3-55), Ar(x)-»O. The singular part and the kernel can easily be

deduced,

B
- — — O

This recovers the familiar 2D thickness kernel of potential flow.

Fig.(3-16) shows the shear flow kernel. Because it is anti-symmetric
with respect to the streamwise coordinate, only the positive part is
plotted. It can be seen that shear flow kernels for different profile
shapes are all enclosed within the envelope of the potential kernel.

This reflects the fact that if we have a point impulse of volume flow

injected into the shear stream, the induced pressure disturbance on the




Rl S i

51

plot was made to examine the flow deflection at the trailing edge. The
largest deflection in Fig.(3-31) is found at the center-line trailing
edge for the case 6=5.0, and its value is about a quarter of the hole
diameter in dimensional terms. Roughly speaking, this is just barely
permissible for a small perturbation theory. Because the maximum flow
deflection of a round hole is always found located at the center-line
trailing edge, this suggests a way to determine the largest boundary
layer thickness that would not violate the small perturbation
assumption. Remember that the free surface deflection is linearly
related to the pressure differential, hence Ap/q is set to be 1 for

convenience. The results of this investigation are shown in Fig.(3-32).

Figures(3-33) to (3-37) show the results for D.B.B.'s analytic shape.
The Cp versus wm/U°° characteristic curve, the shear flow profile defect
and boundary layer thickness effects, the sectional volume flowrate, and
the total volume flowrate increase with respect to the boundary layer
thickness are examined and plotted. In all, they are generally similar
to the round hole case. This implies that the shape of the opening has
much less influence on the cross-flow than the hole aspect ratio and

boundary layer effect.

The conclusions of the boundary layer effect on the transverse slot
and hole can be summarized as follows:
1) The boundary layer tends to decrease the flow resistance constant

Kh(«l/C ), and it does this very effectively.

Q

2) The interference between neighboring holes, as indicated by the
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disturbance induced by a unit strength source/sink, is strongest in b”'

potential flow. The boundary layer tends to suppress the mutual

interference, but this suppression is likely to be localized within a

zone of the order of its thickness. ;“
3) For a real wall flow, how the streamline curvature coefficient is

modified by the velocity and momentum deficits of the main stream

. shear flow needs further careful study, because the above two effects -

?; )

tend to compensate for each other.
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Fig.(3-1a) Two-dimensional slot flow.
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Fig.(3-1b) Schematic illustration of the analogy between the 2D lifting ‘
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Fig.(3-2) The coordinate system and non-dimensional notation used in
Watkin's kernel function method.

..........

--------------------




*K109y1 aroy-3uryes a8yl
2 I03 PwWeYOdS [EOTIdWNU aYyj3 Ul pa3sn wiojueld syl jo suorBaiz.qng (g-¢) 814

57

Ly Ay = )R I I




.

ratCd
. €
v P

,.... R +

‘31
o\




..... . T G
x . 1
.‘~ ) ' ' ‘ 4. PRI 1 ' q ' ' . i L
)
w... ‘so1oy oT3dT[[® @991yl IaA0 MmO(]
a -SS0IX0 3yl Jo uorSael [vIJU9D Y3l Ipou sSUOTINQTIISIp ysemumod (g-¢) 314
P,
“.. .W..P .m.d
3 o (g Ol 50 0°0 §°0- 0't-
. wy x T T v L B L Y T Y T RN v T T 1 v v T - 0 o
. e
.\\n\“l‘
% - ; S
h 0
r.. g
‘-.
| - SO 1
1 . S0
g y 0l
. Sl
i ) v/8 1°¢€
- _
L90°0—i—
i \ f 17
- - | s
+ m N ..:
L - [ L 9 N
\ . <> ]
=9 _ ‘A =2 o)
T s0=W
-] 4L R
n_ g
m X
.- ._-;
"




W.
i
b
L
b
A

AR S ae nas e o

Ll aOUI AR ot arhl e A A s in oS e

60

*A109Yy1 91oYy-Burpea| [BITisWNU ayl
wol3 pautelqo oTiel 3oadse snsiaa 931BIMOTJ aunjop (9-¢) 814

00

v/8

v
N-u

——)

=101S ac

N

PP |

00

Sl

(V4




N R T T Ey—y—p—

61

T

+—

00 0.5 1.0

Fig.(3-7) Volume flowrate versus free-stream Mach number relationship
obtained from the numerical leaking-hole theory.
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Fig.(3-8) Sectional volume flowrate distributions over finite-holes with
aspect ratios 0.5,1.0, and 2.0.
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single transverse slot. (M“=0.05)

hole theory

(b) Cross-flow characteristics of various perforated walls.
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Fig.(3-9) Comparisons of the cross-flow characteristics obtained from
the present theory and experiment (Ref. 1)
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Fig.(3-10) slot planforms for analytical solutions. (Ref. 12) k
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TUNNEL FLOW
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Fig.(3-17) Sketch of the control volume for the relation between :'f;‘}_
entrance plane downwash and free surface slope distributions of a shear R
flow over a slot or hole. 1
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-8A X : streamwise coordinate
9
S : boundary layer thickness
e I (all lengths are normalized by the half slot width)
7 L n= oo ( potential flow )
6A=-]Z .6.
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5 F
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n=7
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2 + ]
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Fig.(3-16) Kernel function for a parallel shear flow over a 2D 5
transverse slot. -
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(b) Shear flow over a hole on a wall.
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Fig.(3-15) Shear flow aerodynamics.
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M_=0

D. B. B. ANALYTIC SHAPE
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Fig.(3-13) Sectional volume flowrate distributions of the cross-flow
over a finite-hole with imposed pressure gradients.
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ROUND HOLE
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boundary layer profile : Up
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Fig.(3-28) Sectional volume flowrate distributions for a round hole in a
power-law profile shear flow.
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Fig.(3-29) Sectional volume flowrate distributions for a round hole in
shear flows with different boundary layer thicknesses.
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D.B.B. ANALYTICAL SHAPE (B/A=1)
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boundary layer profile : U
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Fig.(3-35) Sectional volume flowrate distributions for a D.B.B. hole in f
shear flows. ‘
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D.B.B. ANALYTICAL SHAPE (B/A=1)

viz) =(_Z.. )1/n
boundary layer profile . U &
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Fig.(3-36) Sectional volume flowrate distributions for a D.B.B. hole in
shear flows with different boundary layer thicknesses.
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